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Three-component coupling reactions of isoquinolines,
dimethyl acetylenedicarboxylate and indoles: a facile synthesis

of 3-indolyl-1,2-dihydro-2-isoquinolinyl-2-butenedioate
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Abstract

A three-component coupling of isoquinolines, dimethyl acetylenedicarboxylate (DMAD) and indoles is achieved for the first time to
produce dimethyl (E)-2-[1-(1H-3-indolyl)-1,2-dihydro-2-isoquinolinyl]-2-butenedioates in excellent yields and with high selectivity. The
reaction proceeds smoothly at room temperature without a catalyst. Quinoline, DMAD and indole also undergo smooth coupling to
furnish dimethyl (E)-2-[2-(1H-3-indolyl)-1,2-dihydro-1-quinolinyl]-2-butenedioate under similar conditions. This method is very useful
to functionalize both indoles and aza-aromatic compounds in a one-pot operation.
� 2008 Elsevier Ltd. All rights reserved.
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Indole nucleus is frequently found in medicinal chemis-
try and is considered as ‘privileged scaffolds’.1 SUGEN
found an indolin-2-one as a pharmacophore for potent
KDR kinase inhibitors,2 and Merck recently reported a
class of potent KDR kinase inhibitors containing the
indol-2-yl quinolin-2-one structure (Fig. 1).3
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Fig. 1. Merck KDR inhibitors.
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Isoquinoline is also present in various natural products
such as cryptaustoline (i) and cryptowoline (ii) (Fig. 2).4

They are known to exhibit various biological activities such
as antileukaemic,5 tubulin polymerization inhibitory6 and
anti-tumour activities.7,8 Related synthetic acetoxy-substi-
tuted 5,6-dihydro[2,1-a]isoquinolines (iii) also exhibit
strong binding affinities for the oestrogen receptor of
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Fig. 2. Biologically active indolo[2,1-1]isoquinolines.
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Scheme 1. Preparation of product 4a.

Table 1
Three-component coupling reactions of isoluinolines, DMAD and indoles
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MDA-MB 231 and MCF-7 mammary tumour cell lines.9 It
has also been reported that hydroxy-substituted indolo-
[2,1-a]isoquinolines bind to the colchicine binding site
and inhibit the polymerization of tubulin.9

Given this proven utility, it seems reasonable that the
synthesis of a novel series of indol-3-yl-1,2-dihydro quino-
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Table 1 (continued)

Entry Isoquinoline DMAD Indole Producea Time (h) Yieldb (%)
1 2 3 4
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a All products were characterized by NMR, IR and spectrometry. R=
CO2Me

CO2Me
.

b Isolated yields after purification.
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line derivatives would provide additional lead molecules
for use in drug discovery. Aza-aromatic compounds acti-
vated by acyl chlorides or DMAD are important interme-
diates for the synthesis of a variety of biologically active
nitrogen containing alkaloids.10–12 Knowing the impor-
tance of isoquinoline/quinoline and indole derivatives, the
preparation of their new analogs is of prime importance
in both synthetic and medicinal chemistry.

In continuation of our interest on the functionalization
of aza-aromatic systems activated by acyl chlorides,13 we
herein report a simple and catalyst free method for the
direct coupling of indoles with quinoline and isoquinolines
activated by dimethyl acetylenedicarboxylate via a three-
component reaction. Accordingly, treatment of isoquino-
line (1) with dimethyl acetylenedicarboxylate (2) and indole
(3) in dichloromethane at room temperature for 2 h gave
the product, dimethyl 2-(1-(indolin-3-yl)isoquinolin-2(1H)-
yl)but-2-enedioate 4a in 90% yield (Scheme 1).

Similarly, various indoles such as N-benzyl-, 2-methyl-,
2-phenyl-, 5-bromo- and 5-nitro-indole underwent smooth
coupling with activated isoquinolines to produce the corre-
sponding products in good to excellent yields (Table 1,
entries b–f). The geometry of alkene in product 4a was
found to be E, which was confirmed by comparison of
NMR data with authentic sample.14 In all the cases, the
nucleophilic addition took place selectively at the 1-posi-
tion of isoquinoline, showing high regioselectivity. No
1,4-addition products were observed under these reaction
conditions. Like indoles, 4-bromo-, 5-bromo-, 5-nitro-
and 3-methyl-isoquinolines also reacted readily with
DMAD and indoles to afford the corresponding 1-substi-
tuted isoquinolines (Table 1, entries g–n). Mechanistically,
the reaction may proceed via the formation of a zwitter-
ionic intermediate,15 which reacts simultaneously with
indole to furnish the desired product (Scheme 2).

Like isoquinolines, the quinoline also coupled readily
with indole under identical conditions. The reaction
went to completion in 2.5 h and the product, dimethyl
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2-(2-(1H-indol-3-yl)quinolin-1(2H)-yl)but-2-enedioate 5,
was obtained in 75% yield (Scheme 3).16

This method worked well for both electron rich and
electron deficient substrates. Various functional groups
such as halides, esters and nitro derivatives are well toler-
ated under the reaction conditions (Table 1). This method
offers several advantages such as high yields of products,
mild reaction conditions, greater selectivity, cleaner reac-
tion profiles and operational simplicity. No additives or
catalysts were required to effect the reaction. It should be
noted that isoquinolines gave higher yields of products
when compared to quinolines. The scope and generality
of this process is illustrated with respect to various isoquino-
lines and indoles and the results are presented in Table 1.17

It is noteworthy to mention that isoquinoline was also acti-
vated by methyl propiolate and 1-ethynylphenyl ketone
(Scheme 4). However, the products were obtained as
mixtures in each reaction, the structures of which were
established by NMR, IR and mass spectrometry.18 A
similar method has been reported using chlorovinyl phenyl
ketone instead of 1-ethynylphenyl ketone for the prepara-
tion of 9.19

In summary, we have developed a novel multi-compo-
nent reaction capable of coupling of indoles with quinoline
and isoquinolines activated by dimethyl acetylenedicarbox-
ylate at room temperature without a catalyst to produce
indolyl-dihydroquinoline and isoquinolines. In addition
to its simplicity and mild reaction conditions, this method
provides high yields of products with high selectivity,
which makes it a useful and attractive process for the syn-
thesis of indolyl quinoline and isoquinolines in a single step
operation.
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